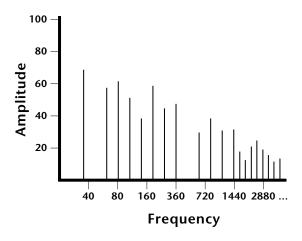

Dynamic Filters

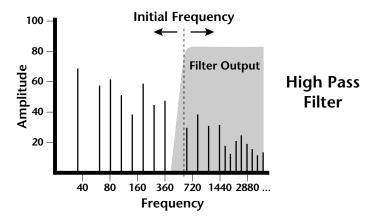
The block diagram of the Proteus 2000's signal path is shown below.



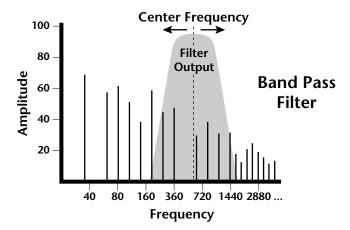
To understand how a filter works, we need to understand what makes up a sound wave. A sine wave is the simplest form of sound wave. Any waveform, except a sine wave, can be analyzed as a mix of sine waves at specific frequencies and amplitudes.


Any waveform can be analyzed as a mixture of sine waves.

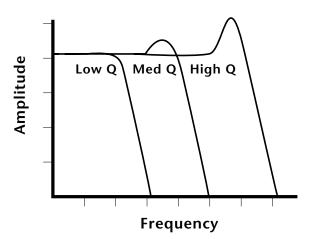
One way to represent complex waveforms is to use a chart with frequency on one axis and amplitude on the other. Each vertical line of the chart represents one sine wave at a specific amplitude and frequency.



What is a Filter?


Most sounds are complex waves containing many sine waves of various amplitudes and frequencies. A filter is a device which allows us to remove certain components of a sound depending on its frequency. For example, a *low-pass filter* lets the low frequencies pass and removes only the high frequencies as illustrated in the following diagram.

A filter that lets only the high frequencies pass is called a *high-pass filter* as illustrated in the following diagram.



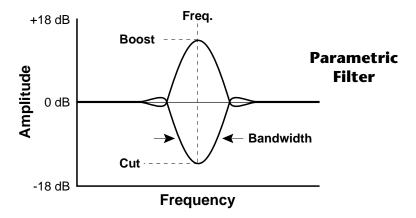
A filter which only lets a certain band of frequencies pass is called a band-pass filter.


A notch filter is just the opposite of a band-pass filter and is used to eliminate a narrow band of frequencies.

Another control found on traditional filters is called Q or resonance. A lowpass filter with a high Q emphasizes the frequencies around the cutoff frequency. The following chart shows how different amounts of Q affect the low-pass filter response. In terms of sound, frequencies around the cutoff tend to "ring" with high Q settings. If a filter with high Q is slowly swept back and forth, various overtones are "picked out" of the sound and amplified as the resonant peak sweeps over them. Bells and gongs are real world examples of sounds which have a high Q.

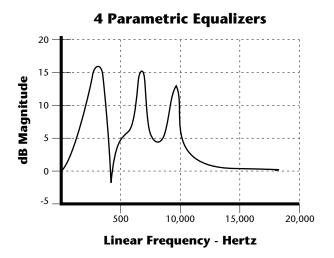
Another characteristic of a filter is the number of poles it contains. Traditional synthesizer filters were usually either 2-pole or 4-pole filters. The Proteus 2000 has selectable 2, 4, and 6-pole low-pass filters. The number of poles in a filter describes the steepness of its slope. The more poles, the steeper the filter's slope and the stronger the filtering action. The tone controls on your home stereo are probably one-pole or two-pole filters. Parametric equalizers are usually either two-pole or three-pole filters.

In terms of vintage synthesizers, Moog and ARP synthesizers used 4-pole filters, Oberheim and E-mu synthesizers were famous for their 2-pole filter sound.


Using a filter, we have a way to control the harmonic content of a sound. As it turns out, even a simple low-pass filter can simulate the response of many natural sounds.

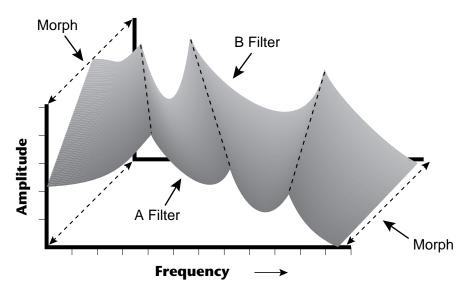
For example, when a piano string is struck by its hammer, there are initially a lot of high frequencies present. If the same note is played softer, there are fewer high frequencies generated by the string. We can simulate this effect by routing keyboard velocity to control the low-pass filter. The result is expressive, natural control over the sound.

If you use an envelope generator to control the cutoff frequency of a filter, the frequency content can be varied dynamically over the course of the note. This adds animation to the sound as well as simulates the response of many natural instruments.


Parametric Filters

A more complex type of filter is called a parametric filter or *Swept EQ*. A parametric filter allows control over three basic parameters of the filter. The three parameters are: Bandwidth, Frequency and Gain. The Bandwidth allows you to select the width of the range of frequencies to be boosted or cut, the Frequency defines the center frequency of the bandwidth, and the Gain parameter either boosts or cuts the frequencies within the selected band by a specified amount. Frequencies not included in the selected band are left unaltered. This is different from a band-pass filter which attenuates (reduces) frequencies outside the selected band.

The parametric filter is quite flexible. Any range of frequencies can be either amplified or attenuated. Several parametric sections are often cascaded in order to create complex filter response curves.


If four parametric filter sections were cascaded, it would be possible to create the following complex filter response.

Many natural instruments have complex resonances which are based on their soundboard or tube size. The resonance shown above would be impossible to create using a normal synthesizer filter.

The Z-Plane Filter

A Z-plane filter is a filter which can change its function over time. In a Z-plane filter, we start with two complex filter types and interpolate between them using a single parameter. See the following diagram.

The Z-plane filter has the unique ability to change its function over time.

Filters A and B represent two different complex filters or "frames." Changing a single parameter, the Morph, changes many complex filter parameters simultaneously. Following along the Morph axis you can see that the filter response smoothly interpolates between the two filters. This is the essence of the Z-plane filter. Through the use of interpolation, many complex parameters are condensed into one manageable entity.


Consider, as an example, the human vocal tract, which is a type of complex filter or resonator. There are dozens of different muscles controlling the shape of the vocal tract. When speaking, however, we don't think of the muscles, we just remember how it feels to form the vowels. A vowel is really a configuration of many muscles, but we consider it a single object. In changing from one vowel to another, we don't need to consider the frequencies of the resonant peaks. You remember the shape of your mouth for each sound and interpolate between them.

This Z-plane filter sweep can be controlled by an envelope generator, an LFO, modulation wheels or pedals, keyboard velocity, key pressure, and so on. In fact, any of the modulation sources can control the Z-plane filter.

Because creating the complex filtering is difficult and very time consuming, we have created 17 different filters and installed them permanently in ROM for your use. You simply select and use the filters in a manner similar to choosing an instrument. Because there are so many types of instruments and filters to choose from, the number of possible permutations is staggering.

Signal Flow

Going back to the Signal Path diagram for a single channel we can reexamine the complete signal path.

Instrument

This is the sampled sound wave. The pitch of the instrument can be modulated by any modulation source. The sample start point can be changed only at the time the note is played.

Z-Plane Filter

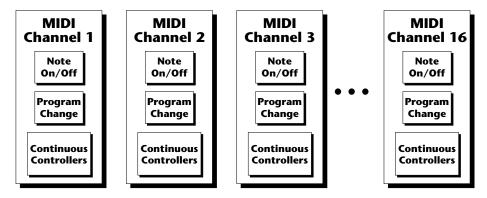
The Z-Plane Filter is used to shape the harmonic content of an instrument. The filter envelope is commonly used to shape the harmonic content dynamically over time but the filter frequency can be modulated by any source. The Q parameter can be modulated only at note-on time. There are 17 types of filters available. See "Proteus 2000 Filter Types" on page 104 for a complete list of the filters.

Digitally Controlled Amplifier (DCA)

Together with the Volume Envelope, the DCA is used to shape the volume contour of a sound. The DCA can be controlled by any modulation source. Velocity is often used as a modulation source for the DCA so that the harder you play, the louder the sound becomes.

Pan

Adjusts the balance of sound to the left and right channels. Pan can be modulated by any modulation source.

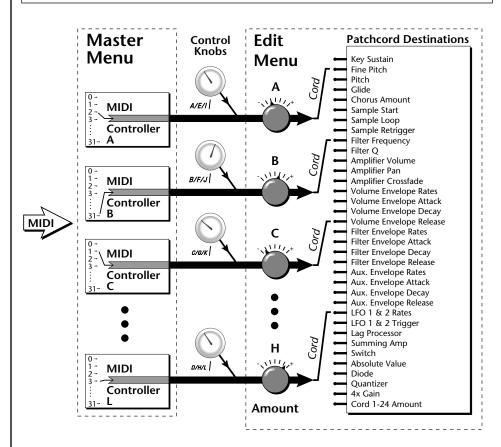

MIDI Channels and **Real-time Controls**

The following MIDI controls are automatically routed in Proteus 2000:

Pitch Wheel	pwh
Modulation Wheel	01
Old DX7 Aftertouch	03
Pedal	04
Volume	07
Pan	10

The MIDI real-time controllers may seem confusing at first, but they are really very simple once you understand them. You already know that there are 16 MIDI channels per MIDI cable. (Proteus 2000 has two MIDI input ports and so can accept a total of 32 MIDI channels.) Each MIDI channel uses three basic types of messages; note on/off, preset changes, and continuous controller messages. Your MIDI keyboard, in addition to telling Proteus 2000 which note was played, can also send real-time control information, which simply means control occurring in real-time or "live." (You may be using a MIDI device other than a keyboard, but for simplicity's sake we'll presume that you are using a keyboard.) Real-time control sources include such things as pitch wheels or levers, modulation wheels or levers, control pedals and aftertouch and are used to add more expression or control.

Your MIDI keyboard sends out real-time controller information on separate continuous controller numbers. There is a set of 32 continuous controller numbers for each MIDI channel. Some of the controllers, such as the modulation wheel, volume, and pan have standardized numbers. For example, volume is usually sent on continuous controller #7. Your keyboard may have other real-time controls such as a control pedal or data sliders which can also be programmed to control the Proteus 2000.



Any MIDI controller can be routed to any modulation destination. First, you have to know which controller numbers your keyboard transmits. Most modern MIDI keyboards let you select a controller number for each control on the keyboard. For example, it may let you select a number from 0-31 for the data slider. The realtime controller numbers that the keyboard transmits must match the numbers Proteus 2000 is receiving, otherwise nothing will happen when you move the controls.

Suppose you wanted to send the four data sliders on your master keyboard. Proteus can handle 12 MIDI controllers (A-L) of your choosing. "MIDI A-L" are simply names for the internal connections that link external MIDI continuous controllers to the PatchCord section of Proteus. There are two parts to the connection. First, MIDI controller numbers are assigned to the letters A-L in the Master menu. Next, the letters A-L are connected to synthesizer control parameters in the PatchCord section of the Edit menu. The PatchCord Amount scales the amount of each controller by a positive or negative value.

The factory presets have the MIDI A-L controls connected to standard synthesizer functions (marked on the front panel of Proteus 2000). By choosing any four of the eight standard functions, your four sliders will work the same on every preset. The chart below shows how this might work if your keyboard transmitted the slider settings on MIDI controllers 12-15.

Control	MIDI Controller #	Routing	Standard Function
Slider 1	12	Α	Controls Filter Frequency
Slider 2	13	В	Controls Filter Resonance
Slider 3	14	G	Controls Movement
Slider 4	15	L	Controls FXB Amount

MIDI A-L are internal connections which simultaneously carry front panel controller knob data and MIDI continuous controller data.

The four controller knobs on the Proteus 2000 front panel work just like MIDI real-time controllers. The four controller knobs are permanently assigned to controllers A-L. Pressing the control button adjacent to the row of knobs selects A-D, E-H or I-L functions for the knobs. The front panel knob (A-L) and incoming MIDI controller messages assigned to that letter, both control the same parameter that you select in the PatchCord screen.

Bank Select Commands

When the original MIDI specification was developed, synthesizers had maybe 8 to 40 preset locations at most. At the time, a whopping 128 presets seemed like more than enough for anyone's purpose. So it was that the MIDI specification included the selection of up to 128 presets.

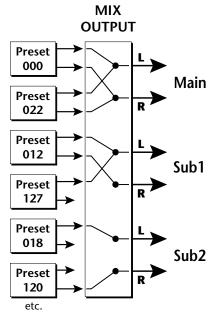
Not everyone was entirely pleased with this limitation and so the MIDI specification was amended to include **Bank Select** commands. Bank Select commands use Continuous Controllers 0 and 32 to allow the selection of up to 16,384 banks of 128 presets (over two million presets).

Because Bank Selects are implemented using Continuous Controllers, the Bank Selections can be made *per channel*. (This is getting better and better.) For each MIDI channel, you can select any of 16,384 banks and then one of the 128 presets in the bank. Of course no synthesizer has 16,384 banks (yet), but hey, it's nice to know it's possible (for that really BIG project).

Continuous Controller (CC) 0 is the MSB (most significant byte) and CC 32 is the LSB (least significant byte). Normally you send both the MSB and LSB controllers to implement a bank change.

Proteus 2000 remembers the MSB and the LSB that were last sent (or last changed from the front panel). For example, if you have already set the Bank MSB to 04, you need only send the LSB to change banks within the Composer sound set. See the MIDI Bank Select chart below.

The selected bank remains selected until you change it (either via MIDI or by changing the bank from the front panel). Standard MIDI Program Change commands select from 128 presets within the selected bank.


When you press the Audition button, the Bank Select MSB and LSB are displayed on the top line of the display.

MIDI BANK SELECT					
	MSB cc00	LSB cc32			
USER	00	00	Bank 0		
USER	00	01	Bank 1		
USER	00	02	Bank 2		
USER	00	03	Bank 3		
CMPSR	04	00	Bank 0		
CMPSR	04	01	Bank 1		
CMPSR	04	02	Bank 2		
CMPSR	04	03	Bank 3		
CMPSR	04	04	Bank 4		
CMPSR	04	05	Bank 5		
CMPSR	04	06	Bank 6		
CMPSR	04	07	Bank 7		

Stereo Mix **Outputs**

Proteus 2000 has three sets of polyphonic stereo outputs (Main, Sub 1 and Sub 2). The channels used by a particular preset (or a particular MIDI channel) can be directed to appear at any one of these three stereo outputs. This feature is useful for adding signal processing (EQ, reverb, etc.) of individual sounds prior to final mixdown. By panning a preset completely left or right, it can be routed to a single output jack.

All presets are automatically routed to the Main outputs unless plugs are inserted into the Sub 1 or Sub 2 outputs.

Each preset can be routed to one (and only one) set of stereo outputs. A preset can be routed to a single output using the pan control.

The routing can be performed according to MIDI channel from the Mix Output screen in the Master menu. Simply assign each channel to the desired output.

> MIX OUTPUT channel 01A: Send 2

Sends DO NOT correspond to the same numbered Submix output numbers.

SEND ROUTINGS

Send 1 - Main Outputs

Send 2 - Submix 1 (or Main Outs if no plug is inserted into Submix jack)

Send 3 - Submix 2 (or Main Outs if no plug is inserted into Submix jack)

Send 4 - Main Outputs

To route a particular preset to a Submix output, first go to the Mix Output screen in the Master menu and set the MIDI channel to "Preset".

MIX OUTPUT

channel 01A: Preset

Next set the Mix Output routing in the preset to the desired output (for each layer). Yes, you can send each layer to a different output if you want.

> MIX OUTPUT Send 2

Why have a Send 4 routing at all if it only goes to the Main output? The answer lies in the dual function of the Sends. Sends can be used either as Effect Sends or as External Output routing busses. Send 4 is only used as an effect send, while Sends 2 and 3 can be used as effect sends or external routing busses.

By sending different amounts of presets to the effects, subtle or striking effects can be achieved using the two effect processors. This feature allows you to get the most out of two effects since you can have eight different mixes.

For more information, See "Mix Output" on page 38.